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Expectation Values of Observables in Time-Dependent
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Let U(t) be the evolution operator of the Schrodinger equation generated by a
Hamiltonian of the form H0(t) + W(t), where H0(t) commutes for all t with a
complete set of time-independent projectors { P j } j = 1 . Consider the observable
A = Ej Pjlj, where Aj ^j11, n > 0, for j large. Assuming that the "matrix
elements" of W(t) behave as \\PjW(t) Pk\\ =* \l\j-k\i-, j*k, for p>0 large
enough, we prove estimates on the expectation value < U(t) <p \ AU(t) <p> =
< A > v (t) for large times of the type < A > v (t) < ct6, where d > 0 depends on p
and u. Typical applications concern the energy expectation < H 0 > v ( t ) in case
H0(t) = Ha or the expectation of the position operator < x 2 > p ( t ) on the lattice
where W(t) is the discrete Laplacian or a variant of it and H0(t) is a time-
dependent multiplicative potential.

KEY WORDS: Time-dependent Hamiltonians; Schrodinger operator; quan-
tum stability; quantum dynamics.

1. INTRODUCTION

This paper is concerned with estimates on the long time behaviour of
expectation values of certain quantum observables. Such estimates pertain
to the study of quantum stability and quantum diffusion as well. Indeed,
although our main result is quite general, the two paradigms we have in
mind are estimates on the energy expectation for general time-dependent
driven systems and estimates on the moments of the position operator for
time-dependent driven systems defined on the lattice. For more details on
the origin of the problem, on quantum stability in general and on related
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and P ( u ) is essentially linear in u. In particular, when u < 1, p>2 is
enough. This estimate holds for any u >0 if p large enough and regardless
of the time dependence of W(t).

Similar results were first obtained for general systems by Nenciu in
ref. 17. He made use of recently developped tools in quantum adiabatic
theory which require increasing gaps between successive eigenvalues, that is
u >1, and differentiability with respect to time of the perturbation W(t).
However, nothing is required on the behaviour of the matrix elements of
the perturbation. The diffusion exponent obtained in ref. 17 is of the form
5 = d 0 (u ) /n , where neN, the order of differentiability of W(t), is large
enough. It was then showed by Joye in ref. 15 that estimates of the type
(1.2) can be obtained for any u>0 and without differentiability of W(t),
provided the coupling induced by W(t) with high energy levels is weak
enough. Typically, if \\PjW(t)\\ ^j-B with 2B> 1 +u, then d =u(B- 1/2).
In terms of matrix elements, this weak coupling condition means that

for some finite constant c and for any initial condition q> belonging to some
dense domain in 3F. More precisely, there exist real valued functions P ( u ) > 0
and < x ( p ) e ] 0 , 1[ (see Proposition 4.1) such that provided p > P ( u ) and
Ve>0,

for some time-independant constant w and for some p > 0 large enough.
We show that there exists a diffusion exponent d > 0 depending on u, and
p such that

where (peJV. Let us assume here for simplicity that the spectrum of the
time-independant part H0 is discrete r(H0) = {A j} j e N . and that the eigen-
values behave according to Aj= ju, as j-> oo, for some u>0. We denote by
Pj the corresponding spectral projectors. We further assume that the per-
turbation W(t) is bounded with matrix elements characterized by

results, the reader should consult refs. 2, 5, 13-15, 17-18, for example. Let
us start by describing our typical results for these cases.

The first type of systems are characterized by the self-adjoint
hamiltonian H(t) = H0+ W(t) on some Hilbert space H which generates
an evolution U(t), U(0) = 1 and the energy expectation is defined by
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\ \P jW( t )P k \ \ -+0 as j2 + k2-»oo. The present results complete those of
ref. 15 to the physically important situation where the strength of the
couplings between neighbouring levels is independent of the energy. This is
caracterized by condition (1.1) requiring decay of the matrix elements
\\PjW(t) Pk\\ to zero as \ j - k \ -> oo only. As a result, the diffusion expo-
nent (1.3) is bounded below by u>0, uniformly in p, whereas the
exponents obtained in refs. 15 and 17 can be made arbitrarily small by
adjusting the parameters of the perturbation W(t). Note however that our
bounds are optimal in some cases, as discussed below. Finally, in the
specific case where H0+W(t) is a time-dependent forced harmonic
oscillator, the quantum dynamics can be solved explicitly, so that the
asymptotic behavior of < H 0 > p (t) can sometimes be derived. See for exam-
ple refs. 3, 4, and 11. However, the perturbation W(t) is unbounded in this
situation.

Consider now the Hilbert space I2(id) whose vectors we denote by
u = { u ( n } } n e z d . Let H0(t) be a time-dependent real-valued multiplicative
operator, possibly unbounded, (potential) such that (H0(t)u)(n) =
H0(n,t)u(n), V n e Z d . Let W be the discrete laplacian (Wu)(n) =
Zjezd, \j-n\ = \ u(j), VneZd, and for fixed m>0, let \x\m be the moment of
order m defined by \x\m = E n E Z d \n\m Pn, where Pn is the projector on the
site n and | \e is the euclidian norm. Under some regularity assumptions,
the time-dependent Schrodinger operator H0(t)+ W gives rise to an evolu-
tion U(t) with U(0) = 1 We show that for any m>0, the expectation value
of |x|m,

satisfies the estimate

for some finite constant c and for any <p in the dense domain
£>(|x|'")c:/2(/rf). Since this estimate holds in the free case as well, (1.4) is
optimal. As a corollary, we note that it is impossible to accelerate a particle
on the lattice. Such results are known in the time-independant case, see e.g.,
refs. 19 and 20. Moreover, lower bounds are proven as well in case the
potential is constant or periodic in time.(9,10,1,16) However, such estimates
are new for general time-dependent potentials. We also consider similar
estimates when the discrete laplacian is replaced by a long range interaction
W of the form



decays to zero as N -> oo, with a rate we control, as explained in the next
section. By inserting the characteristics of the matrix elements of A and
Wq(t) roughly described above, and by making the choice q(x) = xa,
<xe]0, ][, we can achieve sufficient control on S(N, t), by appropriate
choice of the parameters a and B. Note that we have a conflict between the
parameters (1 and a, i.e., between B and q. On the one hand, we wish to
take q and B as large as possible to make Vq closer and closer to U(t) and
to take advantage of the decay induced by A-B in (1.6). On the other
hand, ABW°qA ~1/2 is more and more likely to be bounded when B is small
and W°q is sparser and sparser, i.e., q is small. In case W(t)= Wq(t) is a
genuine band matrix, as is the case with the second application we deal

where ca is real valued and belongs to l 1 ( Z ) , we call long range laplacian.
This allows comparison with a model of AC Stark effect studied recently by
De Bievre and Forni(7) (see also Gallavotti,(8) Bellissard(2)), for which
they prove lower bounds on the expectation of \x\2. Moreover, for some
specific choices of potential H0(t), we are able to prove lower bounds on
( \ x \ 2 y < p ( t ) , some of which grow arbitrarily fast in time, although W
defined in (1.5) is bounded.

We actually deal with both situations in a unified manner as follows.
We consider a self-adjoint hamiltonian H(t) = H0(t) + W(t) such that H0(t)
commutes with a complete set of time independent orthogonal projectors
{ P J } J e N * . We estimate the expectation value of the positive observable A
of the form A = EJeN* A j P j , where { A j } j e N * is a positive strictly increasing
sequence such that A,- -» oo asy'-»oo. In order to estimate <^> ¥ , (0 =

(U(t) q> \AU(t) (f>y, the idea is to compare the evolution U(t) generated by
H0(t)+W(t) with the one generated by H0(t)+W*(t), where Waq(t) is
obtained from W(t) by replacing by zeros all matrix elements \\Pj W(t) Pk ||
such that \j — k\ >q(j + k], where < 7 : I R + - » R + i s a real valued (typically
increasing) function. Wdq(t) can be considered as a generalized band matrix,
whose width increases as we move along the main diagonal. This new
evolution, we call Vq(t), differs from U(t) by a term of order Wq(t) =
W(t)-Wd(t), by Duhamel's formula. Provided \\A"W°(t) A~l/2\\ is
uniformly bounded in time for some ft~& 1/2, (A}v(t) can be essentially
estimated by < Vq(t) (p \AVq(t] (/>). The control of this expectation value
with respect to the evolution Vq(t), generated by the troncated pertur-
bation Wq(t) is the main technical point of the paper. We can get effi-
cient estimates on this expectation value provided we can show that the
quantity
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with in Section 5, this procedure is much easier. Actually, we found this
example quite instructive and inspiring for the proof of the general case.

2. GENERAL STRATEGY

Let H(t) = H0(t)+ W(t), t eR + be the generator of the Schrodinger
equation defined on a separable Hilbert space H.

Hypothesis HO. H0(t) is self-adjoint on a dense domain D for
any t and W(t) is symmetric and relatively bounded with respect to H0(t),
with relative bound a < 1. There exists a set of r-independent complete
orthogonal spectral projectors {Pj}]°=l such that

Let q: R+ ->R + . We define

using a strong sum.
Note that with our notations, W d ( t ) corresponds to the diagonal

operator Wd
0(t) = ̂ jPjW(t) Pj.

Hypothesis H1.

We assume that the following evolution equations (where ' = (d/dt))

give rise to unitary operators which, together with their inverse, map D
into D.

be the positive observable the expectation value of which we will consider.



Under H3, we get from (2.10) and (2.11)

We work under the following hypothesis.

Hypothesis H3. There exists P^\/2 such that

Then, with the notation Vv(t,s)= Vq(t) V ~ l ( s ) ,

where \\R9(t)\\ <2. Let cpeD(A/i) with 0^1/2 and consider </4>»,(0 =
< U(t) q> AU(t) (p~y. We have, due to the positivity of A

Let us describe the general strategy we adopt. Following refs. 15
and 17, we get from Duhamel's formula (in the strong sense),

and there exists two constants 0<L_ ^L + <co and u>0 such that for
any j large enough,

Hypothesis H2. The eigenvalues of A are positive and form a
strictly increasing sequence
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for some finite constant c. Remark that the function q is not specified yet
and that we don't make use of (2.9) at this point.

3. MAIN RESULT

In order to give explicit estimates on <A> (t). we specify a little bit
more our concern.

Hence we require N(t) to be such that 2 \ \A B ]V°A~ l / 2 \ \ 2 t 2 S ( N ( t ) , t) <
K< 1 as t -> oo, so that we can write by means of a bootstrap argument

Thus, provided we can show for some B> 1/2 that S(N, t) -> 0 as N-> oo,
we get from (2.12) and (2.13) under hypothesis H3

Indeed, \\Al/2Vcl(t) <p||2 is related to S(N, t) by the estimates (Vq(t) is
unitary)

We can estimate the large t behaviour of < / 4 > ^ (;) provided we control the
large N behaviour of

Hence, noting that \\A^lzU(s) q>\\2 = < ^ > ^ (s) and writing <A>(t) =
supo=s.v« ( <^>«, (s), we obtain
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Proposition 3.1. Assume HO, H1, H2 and H3 and let q be defined
by

for some a 6 ]0, 1 [. If u(2ft — 1) > 1 + a, there exists finite positive constants
b (see (6.31)) and c0 (see (6.34)) such that if

we get for all t large enough,

Corollary 3.1. Under the same hypotheses as above, and provided
H ( 2 p - 1 ) > 1 + a . , we get from (2.13)

for some finite constant <;•,.
Our results on ( A y v ( t ) follow directly from the above considerations.

Theorem 3.1. Assume the hypotheses of proposition. If u(2B — 1) >
2 + 2(1- a)2, we get for any <p e g ) ( A B ) :

for some finite constant c2.
The proofs of the above results are given in Section 6.

4. APPLICATIONS

In order to apply the above results, we need to determine which per-
turbations W(t) satisfy the hypotheses H3. Let us consider the typical
situation where the norm of the matrix elements PjW(t) Pk of W(t) decays
asymptotically in the direction perpendicular to the diagonal.



By usual estimates (see e.g., refs. 12 and 15), one obtains if 2 p + u > 1:

and

and

Proof. Under assumption H4, one gets:

for some finite constant c, which implies (4.17). To prove (4.18), one
estimates the Schur norm of \\AftW°A-l/2\\:

for \k — j\ large enough.
The constraint on W(t) expressed through H3 can be expressed in

terms of p above and a using estimates on \\ApW°A~l/2\\.

Lemma 4.1. Under H2 and H4, for 0 < a < 1, n, p > 0, B ̂  1/2, one
has

Hypothesis H4. There exist positive constants w0 and p independ-
ent of t such that
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where

By using similar estimates as in refs. 12 and 15, one has, for some finite
constant c, and if p — Bu — 1 > 0:

and

which gives (4.18). |

Gathering the conditions in the above lemma together with the
bootstrap condition u ( 2 / 3 — 1 ) > 2 + 2(1 — a ) 2 stated in Theorem 3.1, we get

Proposition 4.1. Under the hypotheses HO, H1, H2 and H4, there
exists B > 1/2 such that

for any parameter ae ]0, 1[ and p<ao such that

where



where a: R + -» R and W(t) is a long range laplacian in l2(Z) defined as in
(1.5).

where a>: Z x R + -> R is real valued, such that a>(m, t) = w( — m, t) for all
t^O and belongs to l1(Z) uniformly in te R + . By the Schur condition, we
deduce that W(t) is uniformly bounded in t. We assume hypotheses HO and
H1 on the evolutions U(t) and V0(t) and we consider \x\2 = ̂ j£2j2 |y><y'|.
As is well known, see e.g., refs. 2 and 8, this system is explicitly soluble by
Fourier series. Note that \x\2 is not invertible, but it's expectation value

5.1. Long-Range Laplacian

Let H = l2(Z), H0(t) be the time-dependent multiplication operator

Remarks. For u > 1, we have used (4.18). In this case, the values of
p and a are not optimal and it is sometimes possible to improve them by
doing more technical calculations using (4.17) and (4.18). If u < 1, which is
the situation where the analysis in ref. 17 does not apply, the conditions on
p and a are optimal according to (4.17). In particular, one can take p close
to 2 provided a is close to 1 and we can take a close to zero, provided p
is large enough: a(p)-> 1 when p\2and a(p) = l(p-1) when p -» oo.

Note also that in the limit p-> oo, W(t) becomes a band matrix. For
such matrices, we derive the estimate < A ) v ^ c/*1 in Section 5 below, which
is known to be optimal in certain cases (see e.g., refs. 1 and 6).

It should be clear from the above computations that our results
can be easily extended in order to accomodate more general asymptotic
behaviours than these considered in (4.16).

5. EXAMPLES

The above result is quite general since it holds under very weak
assumptions on the behaviour of the matrix elements of W(t). We can get
sharper estimates if we know more about the structure of the perturbation
W(t) as can be seen on the following examples. Actually, the first example
also shows that there are cases where < A > , ? (t) can grow arbitrarily fast in
time, eventhough W(t) is uniformly bounded.
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behaves like the one of the operator ( \x \ + 1 )2 which satisfies H2 with Pj =
| -y><-7l + l7>O1,ye^*andP0=|0><0| .

Proposition 5.1. Let H0(t), W(t) be as above. Let g(n,t) =
w(n, t) ein^a(s)ds and g(x, t) = 2.keZe*'g(k, t)eL2[0, 2«]. Then

and

It is readily seen from (5.19) that if (o(m, t) <co0 \m\ p with p>3/2,
uniformly in t eR + , then < | x | 2 > o (t) « c t 2 , for some finite constant c,
independently of the function a(t). Moreover, this upper bound is optimal
if a(t) = E0 + E1 cos(ft) ("alternating electric field"), for specific values of
the parameters E0, E1 and f, as can be seen from refs. 2, 7-9. Note that we
recover this lower bound from our results in the limit p -» oo.

However, if the decay of the matrix elements w(j — k , t ) of the uniformly
bounded operator W(t) is not fast enough as \j — k\ -» oo, the expectation
value < |x|2>^0 (t) can grow arbitrarily fast, as shown in the example below.

Proposition 5.2. Let H0(t) and W(t) be as above with a(t) =
(1 + t ) - q , q > 1 and p(m, t) = p(m) = \rn\~", where l</?<3/2. Then, there
exists a constant c>0 such that

Remark. Since p>\, the perturbation W(t) is bounded. However,
W<p0 is not in the domain of x. This means that the electric field helps
stabilizing the system for the state <p0. The limit a ( t ) - 0 as t-> co thus
explains the behaviour of < x 2 > 0 (t).

Proof. Consider



to end the proof. |

5.2. Time-Dependent Band Matrix

The estimate we get for this second example is certainly not surprising,
but it has the merit of beeing optimal, which is useful for the sake of
comparisons with general cases (see the remark below Proposition 4.1).
Moreover, the proof of it is relatively easy and contains some ideas we
generalize to prove Proposition 3.1 in Section 6, so we give it here. W(t] is
a band matrix with time-dependent width, i.e., W(t) is such that \\W(t)-
W d

0 ( t ) \ \ < w , teR + , and P k W ( t ) P k = 0 if \j~k\>q(t) where q(t) is a
positive real-valued function. We further assume that HO and HI hold for

It remains to use the estimate

There exists a constant K > 0 such that the last parentheses above is bigger
than 1/2, provided t is large enough and \n\ > K( 1 + t ) q - 1 . Thus, for t large
enough, we get

Hence, with our choice of a ( t ) ,

Integrating by parts twice yields
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the evolutions U(t) and V 0 ( t ) and we consider a generic observable A
satisfying H2.

Proposition 5.3. Let H0(t) and W(t) be as above and let q: R+ ->
R+. Denoting q(t) = s u p 0 < s < t q ( s ) , for all B> 1 there exist constants c< oo
and 7 > 0 such that for any q e D ( A B )

Furthermore, if there exists a K> 0 such that k > K implies Pkp = 0, then

In case H0, W and q are independent of time, the second estimate can be
found in ref. 1.

Proof. Several constants appear in the proof, which we all denote by
the same symbol c. Due to hypothesis H1, the unitary operator Q(t) =
V o ( t ) U(t) satisfies for any (peD

where W ( t ) is bounded by (a. We can write, using Dyson's series

with

where, due to [/>,., F0(?)] =0, V/eN* , teR+,

and



and there exists a y(a) -> oo as a -> oo such that the first term in (5.20) is
bounded above by a constant times

By construction, if k e A 1 ( j ) and n e A ( j , k ) , one has:

for any JVeN*. Let A(j,k) = ( n e N | \j-k\ ^q(t) n}, /t , ( j ) = {ke N* |
!_/ — ̂ | ^a?^(;)} and /i2(j) = N*Mi(7)' where a is determined below.

Moreover (Q(t) is unitary and {A,-}^^. is increasing),
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(where we used j>N). Introducing f e l 2 ( Z ) and gel1(Z)

we can estimate the sum Ej>N of the terms in the last parenthesis above by

The second term of (5.20) is bounded by a constant times

Hence,

where we need atq(t}<N. Thus choosing N(t) = [2a tq( t ) ] + 1, we get by
gathering these estimates

If there exists a K>0 such that k>K implies Pkq> = 0, the sum in the
second term of (5.20) vanishes if N is so large that j> N ( t ) > a t q ( t ) +K.



6. TECHNICALITIES

Proof of Proposition 3.1. From H1, one can easily prove that
(V0 V q ) ( t , s ) = V-1(t) V q ( t , s ) V 0 ( s ) is the evolution operator associated

Obviously, for all jeN, [H0(t), PJ]=0. Then, from the results of Section 5.2
one obtains that for all c p e D ( A B ) , where B = max(2/m, 1), there exists
c < oo such that for all t» 1,

Now, for all j, k e N *,

where \ - \ e is the euclidian norm, one has, for all £ e l 2 ( Z d )

then for any m > 0, if

and

5.3. Laplacian and Time-Dependant Potential on l 2 ( Z d )

Let W be the discrete laplacian on 1 2 ( Z d ) : (Wu)(n) = £yeZ'', \,-n\ = i u(J)
and H0(t) be a time dependent multiplication operator defined on a dense
domain D for any t, which satisfies hypothesis H1. Let

Thus, with N(t) = [2atq(t)] + 1 again, we get in this case for a large
enough,
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From this, \\Pk K ^ ' C I I = ||/>*£!!, (6.21), and the definitions B(j,k) =
{neN s.t. \k-j\<Kl>'l]-*)min(k,j)*nl/(>-*)}, rl(j) = {keN*\
((k-j)1 ~ Vy010 -a)) ̂  Kat},r2(j) = {ke^*\ ((j-k^'^/k^-^^Kat} and
r3(y) = f^J* - {r,(7) u r 2 ( j ) } , one proves that the right hand side of (6.22)
is bounded above by

We now make use of the following lemma which is proven at the end of
this section:

Lemma 6.1. Under the assumptions H0, H1 and H2, there exists
K< i such that for all s, t e R, 0 <s < t,

for suitable non negative finite constants a and y. For all C , e D ( A B ) one
then obtains, using the unitarity of V 0 (s ) and [ V0(s), Pj] = 0,

Moreover, if w = sup t > 0 \(Wd
q- JO Oil then

to the bounded operator W(t)=V0
>(t)(W^- W d

0 ) ( t ) V0(t); thus one can
write the norm convergent Dyson's series:

Barbaroux and Joye1242
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where y>0, and C0< oo. Indeed, for fixed jeN*, if k e F i ( j ) \jF2(j) then
for all n e B(j, k), one has n > at and if k e r 1 ( j ) and n e B(j, k)

so that from H2

where c is constant.
We deal with each term separately. Consider first

Since C = ^~V for some q> then \\Pk£\\ =(l/tf) \\Pk<p\\ and

since k > j, where C1 is a finite constant. We then use the following lemma,
the proof of which can be found at the end of this section

Lemma 6.2. With the same notations as in Proposition 3.1, if
n(2B — 1) > 1 + a then there exists c < oo such that for all t» 1,



On the other hand, by the definition of l t ( j ) , one has j = l t ( j ) + ( K a t ) l / 1 - 1 x
/,(;)", which implies lt(j)/j> 1/2, if

Since m > l t ( j ) — j, one has

is bounded above by

This result together with (6.29) and (6.30) gives for some finite constant c3:

where l,(j) = sup{xe R s . t . j > x + ( K a t ) l / ( l - a x a } and c is a finite constant.
Finally,

one gets from the same lemma

where c is a finite constant. Similarly, for

Thus, (6.25), (6.26) and n(2B-1)>1 +a then give
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where c4, c5 are a finite constants. Inequalities (6.27), (6.28) and (6.33)
imply together with (6.24), for any C e D ( A - B ) :

From (6.32) one obtains:
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for some finite constant c6 independant of t and p, which proves (3.15).

Proof of Lemma 6.1. For all t > 0 and for fixed n, we first calculate
the values of j and k, 0<j^k such that for all pe{1 , . . . , n} and for all
5,6 [0, t], (ie {1,..., p}), one has Pk W(s 1 } W(s2) • • • W(sp) Pj = 0. For n=1,
consider the positive continuous concave function f 1 ( x ) = j + q(j + x),
where q(x) = xa as in Proposition 3.1. Let l 1 ( j ) be it's unique positive fixed
point; then for all k > l 1 ( j ) , one has k — j>q(k + j) which implies that
PkW(s)Pj = 0, for all se [0,t], since [ V0, Pj] = [V0, Pk] =0; thus
P k Q 1 ( t , s ) P j = 0. Now define f2(x) = l1

+ (j) + q(l1
+(j)+ x) and let l2 + (j) be

it's unique fixed point; then for all s1, s2 e [0, t]:

If / > / + (y), F, ^(s2) Pj = 0. If l < l1
+ (j), then for all k > l2+ (j) one has

and thus Pk W(s 1 ) P1 = 0. Finally, if k > l2
+ (j), P k r 2 ( t , s) Pj = 0.



By induction, suppose that for some fixed m that for all 1 < i<m- 1,

then

which holds since (1 + x)a < 1 + a.x for 0 < a < 1 and 0 < x < 1, we get

Indeed, using the following estimate

Those fixed points are such that PkQn(t,s)Pj = 0 as soon as k<ln (j).
We now give an estimate of ln(j) . One has:

By using the same arguments, one can easily construct an increasing
sequence ( l n ( j ) ) n E N ( l o ( J ) = J) of fixed points of fn(x) = C-iC/) +
q(l*-1(7) + x) such that for any m e N, if k> 1 + (j), then PkQm(t, s) Pj = 0.
Note that 1m + (j) does not depend on s and t.

Similarly, there exists a decreasing sequence (possibly finite) of
positive values (l~(j)) solutions of the fixed point equations

Barbaroux and Joye1246
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and

If K ^ ( 2 « ( 1 +a)/( l -a))1 / ( 1 - a ) , the last inequality in (6.36) gives

Then from (6.37) and (6.35), with n = 1 and K = max{ (2a( 1 + a)/( 1 - a ) ) 1 / ( 1 - a ) ,
(1 +a)/(l —a)} , one obtains for all ne N*:

which proves (6.23) if k> j. With similar arguments on ln (j), one can
prove for k and j such that k<j that

Proof of Lemma 6.2. Since n(2B — 1) > 1 + a, there exists K e R such
that 2k(1-a)>l and u(1 -2B) + 2ka(1 -a) < -1; then for some finite
constant C depending only on k, and for all t > 1:



1248 Barbaroux and Joye

where C(k) = C(k) 2 u ( 2 B - 1 ) + 2 K ( 1 - a ) 2 . By the choice of K one has f1(k) =
(|k| + l ) u ( 1 - 2 B ) + 2 k a ( 1 - a ) e l 1 (Z) and f2(k) = (\k\ + l ) - 2 K ( l - a ) e l l ( Z ) ; then
one gets
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